
pynsist Documentation
Release 2.8

Thomas Kluyver

Mar 21, 2022

Contents

1 Quickstart 3

2 Contents 5
2.1 The Config File . 5
2.2 Installer details . 10
2.3 FAQs . 11
2.4 Release notes . 15
2.5 Python API . 19
2.6 Example applications . 22
2.7 Design principles . 22

3 Indices and tables 25

Python Module Index 27

Index 29

i

ii

pynsist Documentation, Release 2.8

Pynsist is a tool to build Windows installers for your Python applications. The installers bundle Python itself, so you
can distribute your application to people who don’t have Python installed.

Pynsist 2 requires Python 3.5 or above. You can use Pynsist 1.x on Python 2.7 and Python 3.3 or above.

Contents 1

http://pynsist.readthedocs.io/en/1.12/

pynsist Documentation, Release 2.8

2 Contents

CHAPTER 1

Quickstart

1. Get the tools. Install NSIS, and then install pynsist from PyPI by running pip install pynsist.

2. Write a config file installer.cfg, like this:

[Application]
name=My App
version=1.0
How to launch the app - this calls the 'main' function from the 'myapp' package:
entry_point=myapp:main
icon=myapp.ico

[Python]
version=3.6.3

[Include]
Packages from PyPI that your application requires, one per line
These must have wheels on PyPI:
pypi_wheels = requests==2.18.4

beautifulsoup4==4.6.0
html5lib==0.999999999

Other files and folders that should be installed
files = LICENSE

data_files/

See The Config File for more details about this, including how to bundle packages which don’t publish wheels.

3. Run pynsist installer.cfg to generate your installer. If pynsist isn’t found, you can use python
-m nsist installer.cfg instead.

3

http://nsis.sourceforge.net/Download

pynsist Documentation, Release 2.8

4 Chapter 1. Quickstart

CHAPTER 2

Contents

2.1 The Config File

All paths in the config file are relative to the directory where the config file is located, unless noted otherwise.

2.1.1 Application section

name
The user-readable name of your application. This will be used for various display purposes in the installer, and
for shortcuts and the folder in ‘Program Files’.

version
The version number of your application.

publisher (optional)
The publisher name that shows up in the Add or Remove programs control panel.

New in version 1.10.

entry_point
The function to launch your application, in the format module:function. Dots are allowed in the module
part. pynsist will create a script like this, plus some boilerplate:

from module import function
function()

script (optional)
Path to the Python script which launches your application, as an alternative to entry_point.

Ensure that this boilerplate code is at the top of your script:

#!python3.6
import sys, os
import site

(continues on next page)

5

pynsist Documentation, Release 2.8

(continued from previous page)

scriptdir, script = os.path.split(os.path.abspath(__file__))
pkgdir = os.path.join(scriptdir, 'pkgs')
Ensure .pth files in pkgdir are handled properly
site.addsitedir(pkgdir)
sys.path.insert(0, pkgdir)

The first line tells it which version of Python to run with. If you use binary packages, packages compiled for
Python 3.3 won’t work with Python 3.4. The other lines make sure it can find the packages installed along with
your application.

target (optional)
parameters (optional)

Lower level definition of a shortcut, to create start menu entries for help pages or other non-Python entry points.
You shouldn’t normally use this for Python entry points.

Note: Either entry_point, script or target must be specified, but not more than one. Specifying
entry_point is normally easiest and most reliable.

icon (optional)
Path to a .ico file to be used for shortcuts to your application and during the install/uninstall process. Pynsist
has a default generic icon, but you probably want to replace it.

console (optional)
If true, shortcuts will be created using python.exe, which opens a console for the process. If false, or
not specified, they will use pythonw.exe, which doesn’t create a console. In that case, stdout and stderr from
Python code will be redirected to a log file in APPDATA.

extra_preamble (optional)
Path to a file containing extra Python commands to be run before your code is launched, for example to set
environment variables needed by pygtk. This is only valid if you use entry_point to specify how to launch
your application.

If you use the Python API, this parameter can also be passed as a file-like object, such as io.StringIO.

license_file (optional)
Path to a text file containing the license under which your software is to be distributed. If given, an extra step
before installation will check the user’s agreement to abide by the displayed license. If not given, the extra step
is omitted.

2.1.2 Shortcut sections

One shortcut will always be generated for the application. You can add extra shortcuts by defining sections titled
Shortcut Name. For example:

[Shortcut IPython Notebook]
entry_point=IPython.html.notebookapp:launch_new_instance
icon=scripts/ipython_nb.ico
console=true

entry_point
script (optional)
icon (optional)
console (optional)

6 Chapter 2. Contents

https://docs.python.org/3/library/io.html#io.StringIO

pynsist Documentation, Release 2.8

target (optional)
parameters (optional)
extra_preamble (optional)

These options all work the same way as in the Application section.

Microsoft offers guidance on what shortcuts to include in the Start screen/menu. Most applications should only need
one shortcut, and things like help and settings should be accessed inside the app rather than as separate shortcuts.

2.1.3 Command sections

New in version 1.7.

Your application can install commands to be run from the Windows command prompt. This is not standard practice
for desktop applications on Windows, but if your application specifically provides a command line interface, you can
define one or more sections titled Command name:

[Command guessnumber]
entry_point=guessnumber:main

If you use this, the installer will modify the system PATH environment variable.

entry_point
As with shortcuts, this specifies the Python function to call, in the format module:function.

console (optional)
If true (default), the .exe wrapper for the command will open a console if it’s not already inside one. If
false, it will be a GUI application, which doesn’t use a console.

If the user runs the command directly, they do so in a console anyway. But commands with console=false
can be useful if your GUI application needs to run a subprocess without a console window popping up.

extra_preamble (optional)
As for shortcuts, a file containing extra code to run before importing the module from entry_point. This
should rarely be needed.

2.1.4 Python section

version
The Python version to download and bundle with your application, e.g. 3.6.3. Python 3.5 or later are sup-
ported. For older versions of Python, use Pynsist 1.x.

bitness (optional)
32 or 64, to use 32-bit (x86) or 64-bit (x64) Python. On Windows, this defaults to the version you’re using, so
that compiled modules will match. On other platforms, it defaults to 32-bit.

include_msvcrt (optional)
The default is true, which will include an app-local copy of the Microsoft Visual C++ Runtime, required for
Python to run. The installer will only install this if it doesn’t detect a system installation of the runtime.

Setting this to false will not include the C++ Runtime. Your application may not run for all users until they
install it manually (download from Microsoft). You may prefer to do this for security reasons: the separately
installed runtime will get updates through Windows Update, but app-local copies will not.

Users on Windows 10 should already have the runtime installed systemwide, so this does won’t affect them.
Users on Windows Vista, 7, 8 or 8.1 may already have it, depending on what else is installed.

New in version 1.9.

2.1. The Config File 7

https://msdn.microsoft.com/en-us/library/windows/desktop/jj673981(v=vs.85).aspx#decide_the_right_entry_points_to_include_in_the_start_screen
https://www.microsoft.com/en-us/download/details.aspx?id=48145

pynsist Documentation, Release 2.8

Note: Pynsist 1.x also included a format= option to select between two ways to use Python: bundled or installer.
Pynsist 2 only supports bundled Python. For the installer option, use Pynsist 1.x.

2.1.5 Include section

To write these lists, put each value on a new line, with more indentation than the line with the key:

key=value1
value2
value3

pypi_wheels (optional)
A list of packages in the format name==version to download from PyPI or extract from the directories in
extra_wheel_sources. These must be available as wheels; Pynsist will not try to use sdists or eggs (see
Bundling packages which don’t have wheels on PyPI).

You need to list all the packages needed to run your application, including dependencies of the packages you
use directly.

New in version 1.7.

extra_wheel_sources (optional)
One or more directory paths in which to find wheels, in addition to fetching from PyPI. Each package listed in
pypi_wheels will be retrieved from the first source containing a compatible wheel, and all extra sources have
priority over PyPI.

Relative paths are from the directory containing the config file.

New in version 2.0.

local_wheels (optional)
One or more paths to .whl wheel files on the local filesystem. All matching wheel files will be included in the
installer. These paths can also use glob patterns to match multiple wheels, e.g. wheels/*.whl will include
all wheels from the folder wheels.

Pynsist checks that each pattern matches at least one file, that only one wheel is being used for each distribution
name, and that all wheels are compatible with the target Python version.

Relative paths are from the directory containing the config file.

New in version 2.2.

Note: The local_wheels option is useful if you’re using Pynsist as a step in a larger build process: you can use
another tool to prepare all your application’s dependencies as wheels, and then pass them to Pynsist.

For simpler build processes, pypi_wheels will search PyPI for compatible wheels, and handle downloading and
caching them. Use extra_wheel_sources if you need to add some wheels which aren’t available on PyPI.

packages (optional)
A list of importable package and module names to include in the installer. Specify only top-level packages, i.e.
without a . in the name.

Note: The packages option finds and copies installed packages from your development environment. Spec-
ifying packages in pypi_wheels instead is more reliable, and works with namespace packages.

8 Chapter 2. Contents

pynsist Documentation, Release 2.8

files (optional)
Extra files or directories to be installed with your application.

You can optionally add > destination after each file to install it somewhere other than the installation
directory. The destination can be:

• An absolute path on the target system, e.g. C:\\ (but this is not usually desirable).

• A path starting with $INSTDIR, the specified installation directory.

• A path starting with any of the constants NSIS provides, e.g. $SYSDIR.

The destination can also include ${PRODUCT_NAME}, which will be expanded to the name of your application.

For instance, to put a data file in the (32 bit) common files directory:

[Include]
files=mydata.dat > $COMMONFILES

exclude (optional)
Files to be excluded from your installer. This can be used to include a Python library or extra directory only
partially, for example to include large monolithic python packages without their samples and test suites to
achieve a smaller installer file.

• The parameter is expected to contain a list of files relative to the build directory. Therefore, to include files
from a package, you have to start your pattern with pkgs/<packagename>/.

• You can use wildcard characters like * or ?, similar to a Unix shell.

• If you want to exclude whole subfolders, do not put a path separator (e.g. /) at their end.

• The exclude patterns are applied to packages, pypi wheels, and directories specified using the files
option. If your exclude option directly contradicts your files or packages option, the files in
question will be included (you can not exclude a full package/extra directory or a single file listed in
files).

• Exclude patterns are applied uniformly across platforms and can use either Unix-style forward-slash (/),
or Windows-style back-slash (\) path separators. Exclude patterns are normalized so that patterns written
on Unix will work on Windows, and vice-versa.

Example:

[Include]
packages=PySide
files=data_dir
exclude=pkgs/PySide/examples
data_dir/ignoredfile

2.1.6 Build section

directory (optional)
The build directory. Defaults to build/nsis/.

installer_name (optional)
The filename of the installer, relative to the build directory. The default is made from your application name and
version.

nsi_template (optional)
The path of a template .nsi file to specify further details of the installer. The default template is part of pynsist.

2.1. The Config File 9

http://nsis.sourceforge.net/Docs/Chapter4.html#4.2.3
https://docs.python.org/3/library/fnmatch.html
https://github.com/takluyver/pynsist/blob/master/nsist/pyapp.nsi

pynsist Documentation, Release 2.8

This is an advanced option, and if you specify a custom template, you may well have to update it to work with
future releases of Pynsist.

See the NSIS Scripting Reference for details of the NSIS language, and the Jinja2 Template Designer Docs for
details of the template format. Pynsist uses templates with square brackets ([]) instead of Jinja’s default curly
braces ({}).

2.2 Installer details

The installers pynsist builds do a number of things:

1. Install a number of files in the installation directory the user selects:

• An embedded build of Python, including the standard library.

• A copy of the necessary Microsoft C runtime for Python to run, if this is not already installed on the
system.

• The launcher script(s) that start your application

• The icon(s) for your application launchers

• Python packages your application needs

• Any other files you specified

2. Create a start menu shortcut for each launcher script. If there is only one launcher, it will go in the top level of
the start menu. If there’s more than one, the installer will make a folder named after the application.

3. If you have specified any commands, modify the PATH environment variable in the registry, so that your com-
mands will be available in a system command prompt.

4. Byte-compile all Python files in the pkgs subdirectory. This should slightly improve the startup time of your
application.

5. Write an uninstaller, and the registry keys to put it in ‘Add/remove programs’.

The installer (and uninstaller) is produced using NSIS, with the Modern UI.

2.2.1 Logging output

When your installed application is run in GUI mode (without a console), any output from print() (and anything else
that writes to stdout or stderr from Python) will be written to a file %APPDATA%\scriptname.log. On Windows
7, APPDATA defaults to C:\Users{username}\AppData\Roaming.

This file is recreated each time your application is launched, so it shouldn’t keep growing larger.

You can override this by setting sys.stdout and sys.stderr.

2.2.2 Uncaught exceptions

If there is an uncaught exception in your application - for instance if it fails to start because a package is missing -
the traceback will be written to the same log file described in Logging output. If users report crashes, details of the
problem will probably be found there.

You can override this by setting sys.excepthook().

This is only provided if you specify your application using entry_point.

10 Chapter 2. Contents

http://nsis.sourceforge.net/Docs/Chapter4.html
http://jinja.pocoo.org/docs/dev/templates/
http://nsis.sourceforge.net/Main_Page
https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/library/sys.html#sys.excepthook

pynsist Documentation, Release 2.8

You can also debug an installed application by using the installed Python to launch the application. This will show
tracebacks in the Command Prompt. In the installation directory run:

C:\\Program Files\\Application>Python\\python.exe "Application.launch.pyw"

2.2.3 Working directory

If users start your application from the start menu shortcuts, the working directory will be set to their home directory
(%HOMEDRIVE%%HOMEPATH%). If they double-click on the scripts in the installation directory, the working directory
will be the installation directory. Your application shouldn’t rely on having a particular working directory; if it does,
use os.chdir() to set it first.

2.3 FAQs

2.3.1 Building on other platforms

You can use Pynsist to build Windows installers from a Linux or Mac system. You’ll need to install NSIS so that the
makensis command is available. Here’s how to do that on some common platforms:

• Debian/Ubuntu: sudo apt-get install nsis

• Fedora: sudo dnf install mingw32-nsis

• Mac with Homebrew: brew install makensis

Installing Pynsist itself is the same on all platforms:

pip install pynsist

If your package relies on compiled extension modules, like PyQt4, lxml or numpy, you’ll need to ensure that the
installer is built with Windows versions of these packages. There are a few options for this:

• List them under pypi_wheels in the Include section of your config file. Pynsist will download Windows-
compatible wheels from PyPI. This is the easiest option if the dependency publishes wheels.

• Get the importable packages/modules, either from a Windows installation, or by extracting them from an in-
staller. Copy them into a folder called pynsist_pkgs, next to your installer.cfg file. Pynsist will
copy everything in this folder to the build directory.

• Include exe/msi installers for those modules, and modify the .nsi template to extract and run these during
installation. This can make your installer bigger and slower, and it may create unwanted start menu shortcuts
(e.g. PyQt4 does), so it’s a last resort. However, if the installer sets up other things on the system, you may need
to do this.

When running on non-Windows systems, Pynsist will bundle a 32-bit version of Python by default, though you can
override this in the config file. Whichever method you use, compiled libraries must have the same bit-ness as the
version of Python that’s installed.

2.3.2 Using data files

Applications often need data files along with their code. The easiest way to use data files with Pynsist is to store them
in a Python package (a directory with a __init__.py file) you’re creating for your application. They will be copied
automatically, and modules in that package can locate them using __file__ like this:

2.3. FAQs 11

https://docs.python.org/3/library/os.html#os.chdir
https://brew.sh/

pynsist Documentation, Release 2.8

data_file_path = os.path.join(os.path.dirname(__file__), 'file.dat')

If you don’t want to put data files inside a Python package, you will need to list them in the files key of the
[Include] section of the config file. Your code can find them relative to the location of the launch script running
your application (sys.modules['__main__'].__file__).

Note: The techniques above work for fixed data files which you ship with your application. For files which your
app will write, you should use another location, because an app installed systemwide cannot write files in its install
directory. Use the APPDATA or LOCALAPPDATA environment variables as locations to write hidden data files (what’s
the difference?):

writable_file = os.path.join(os.environ['LOCALAPPDATA'], 'MyApp', 'file.dat')

2.3.3 Running subprocesses

There are a few things to be aware of if your code needs to run a subprocess:

• The python command may not be found, or may be another version of Python. Use sys.executable to
get the path of the Python executable running your application.

• Commands which are normally installed by your Python dependencies, such as sphinx-build or
pygmentize, won’t be available when your app is installed. You can often launch the same thing from
an importable module by running something like {sys.executable} -m sphinx.

• When your application runs as a GUI (without a console), subprocesses launched with sys.executable
don’t have anywhere to write output. This makes debugging harder, and the subprocess can get stuck trying to
write output. You can capture output in your code and print it (sending it to the log file described under Logging
output):

res = subprocess.run([sys.executable, "-c", "print('hello')"],
text=True, capture_output=True)

print(res.stdout)
print(res.stderr)

If you want a console window to appear for your subprocess, check if sys.executable points to pythonw.
exe, and use python.exe in the same folder instead:

python = sys.executable
if python.endswith('pythonw.exe'):

python = python.removesuffix('pythonw.exe') + 'python.exe'
subprocess.run([python, "-c", "print('hello'); input('Press enter')"])

The console will close as soon as the subprocess finishes, so the example above uses input() to wait for input
and give the user time to see it.

2.3.4 Bundling packages which don’t have wheels on PyPI

Most modern Python packages release packages in the ‘wheel’ format, which Pynsist can download and use automat-
ically (pypi_wheels in the config file). But some older packages and packages with certain kinds of complexity
don’t do this.

If you need to include a package which doesn’t release wheels, you can build your own wheels and include them with
either the extra_wheel_sources or the local_wheels config options.

12 Chapter 2. Contents

https://superuser.com/a/21462/209976
https://superuser.com/a/21462/209976
https://docs.python.org/3/library/sys.html#sys.executable
https://docs.python.org/3/library/sys.html#sys.executable
https://docs.python.org/3/library/sys.html#sys.executable
https://docs.python.org/3/library/functions.html#input

pynsist Documentation, Release 2.8

Run pip wheel package-name to build a wheel of a package on PyPI. If the package contains only Python
code, this should always work.

If the package contains compiled extensions (typically C code), and does not publish wheels on PyPI, you will need
to build the wheels on Windows, and you will need a suitable compiler installed. See Packaging binary extensions in
the Python packaging user guide for more details. If you’re not familiar with building Python extension modules, this
can be difficult, so you might want to think about whether you can solve the problem without that package.

Note: If a package is maintained but doesn’t publish wheels, you could ask its maintainers to consider doing so. But
be considerate! They may have reasons not to publish wheels, it may mean a lot of work for them, and they may have
been asked before. Don’t assume that it’s their responsibility to build wheels, and do look for existing discussions on
the topic before starting a new one.

2.3.5 Packaging with tkinter

Because Pynsist makes use of the “bundled” versions of Python the tkinter module isn’t included by default. If
your application relies on tkinter for a GUI then you need to find the following assets:

• The tcl directory in the root directory of a Windows installation of Python. This needs to come from the same
Python version and bitness (i.e. 32-bit or 64-bit) as the Python you are bundling into the installer.

• The _tkinter.pyd, tcl86t.dll and tk86t.dll libraries in the DLLs directory of the version of Python
your are using in your app. As above, these must be the same bitness and version as your target version of
Python.

• The _tkinter.lib file in the libs directory of the version of Python you are using in your app. Same
caveats as above.

The tcl directory should be copied into the root of your project (i.e. in the directory that contains installer.cfg)
and renamed to lib (this is important!).

Create a new directory in the root of your project called pynsist_pkgs and copy over the other four files mentioned
above into it (so it contains _tkinter.lib, _tkinter.pyd, tcl86t.dll and tk86t.dll).

Finally, in your .cfg file ensure the packages section contains tkinter and _tkinter, and the files section
contains lib, like this:

packages=
tkinter
_tkinter

files=lib

Build your installer and test it. You’ll know everything is in the right place if the directory into which your application
is installed contains a lib directory containing the contents of the original tcl directory and the pkgs directory
contains the remaining four files. If things still don’t work check the bitness and Python version associated with these
assets and make sure they’re the same as the version of Python installed with your application.

Note: A future version of Pynsist might automate some of this procedure to make distributing tkinter applications
easier.

2.3. FAQs 13

https://packaging.python.org/guides/packaging-binary-extensions/

pynsist Documentation, Release 2.8

2.3.6 DLL load failed errors

Importing compiled extension modules in your application may fail with errors like this:

ImportError: DLL load failed: The specified module could not be found.

This means that the Python module it’s trying to load needs a DLL which isn’t there. Unfortunately, the error message
doesn’t say which DLL is missing, and there’s no simple way to identify it.

The traceback should show which import failed. The module that was being imported should be a file with a .pyd
extension. You can use a program called Dependency Walker on this file to work out what DLLs it needs and which
are missing, though you may need to adjust the ‘module search order’ to avoid some false negatives.

Once you’ve worked out what is missing, you’ll need to make it available. This may mean bundling extra DLLs as
data files. If you do this, it’s up to you to ensure you have the right to redistribute them.

2.3.7 Code signing

People trying to use your installer will see an ‘Unknown publisher’ warning. To avoid this, you can sign it with
a digital certificate. See Mozilla’s instructions on signing executables using Mono, or this guide from Adafruit on
signing an installer.

Signing requires a certificate from a provider trusted by Microsoft. As of summer 2017, these are the cheapest options
I can find:

• Certum’s open source code signing certificate: C86 for a certificate with a smart card and reader, C28 for a new
certificate if you have the hardware. Each certificate is valid for one year. This is only for open source software.

• Many companies resell Comodo code signing certificates at prices lower than Comodo themselves, especially
if you pay for 3–4 years up front. CodeSignCert ($59–75 per year), K Software ($67–$84 per year) and Cheap
SSL Security (UK, £54–£64 per year) are a few examples; a search will turn up many more like them.

I haven’t used any of these companies, so I’m not making a recommendation. Please do your own research before
buying from them.

If you find another good way to get a code signing certificate, please make a pull request to add it!

2.3.8 Alternatives

Other ways to distribute applications to users without Python installed include freeze tools, like cx_Freeze and PyIn-
staller, and Python compilers like Nuitka.

pynsist has some advantages:

• Python code often does things—like using __file__ to find its location on disk, or sys.executable to
launch Python processes—which don’t work when it’s run from a frozen exe. pynsist just installs Python files,
so it avoids all these problems.

• It’s quite easy to make Windows installers on other platforms, which is difficult with other tools.

• The tool itself is simpler to understand, and less likely to need updating for new Python versions.

And some disadvantages:

• Installers tend to be bigger because you’re bundling the whole Python standard library.

• You don’t get an exe for your application, just a start menu shortcut to launch it.

• pynsist only makes Windows installers.

14 Chapter 2. Contents

https://www.dependencywalker.com/
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions/Signing_an_executable_with_Authenticode
https://learn.adafruit.com/how-to-sign-windows-drivers-installer/making-an-installer#sign-the-installer
https://learn.adafruit.com/how-to-sign-windows-drivers-installer/making-an-installer#sign-the-installer
https://www.certum.eu/certum/cert,offer_en_open_source_cs.xml
https://codesigncert.com/comodocodesigning
http://codesigning.ksoftware.net/
https://cheapsslsecurity.co.uk/comodo/codesigningcertificate.html
https://cheapsslsecurity.co.uk/comodo/codesigningcertificate.html
http://cx-freeze.sourceforge.net/
http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://nuitka.net/
https://docs.python.org/3/library/sys.html#sys.executable

pynsist Documentation, Release 2.8

Popular freeze tools also try to automatically detect what packages you’re using. Pynsist could do the same thing,
but in my experience, this detection is complex and often misses things, so for now it expects an explicit list of the
packages your application needs.

Another alternative is conda constructor, which builds an installer out of conda packages. Conda packages are more
flexible than PyPI packages, and many libraries are already packaged, but you have to make a conda package of your
own code as well before using conda constructor to make an installer. Conda constructor can also make Linux and
Mac installers, but unlike Pynsist, it can’t make a Windows installer from Linux or Mac.

2.4 Release notes

2.4.1 Version 2.8

• The NSIS installer template now has an install_pkgs block around the instructions to install the pkgs
folder, allowing it to be overridden (PR #245).

• New example for streamlit (PR #237).

• Added a couple of FAQs entries (PR #233, PR #235).

2.4.2 Version 2.7

• Fix checking compatibility of wheels with abi3 tags, e.g. cryptography (PR #227).

• Ensure that the local packages directory is added to sys.path as an absolute path, not a relative one (PR
#226).

• Pynsist now requires Python 3.6 or above, although it can still build installers with Python 3.5 or above.

• Update details of available examples (PR #215, PR #223).

2.4.3 Version 2.6

• Fix finding binary wheels for Python 3.8 and above (PR #210).

• Better error messages when entry points for shortcuts or commands are invalid (PR #213).

2.4.4 Version 2.5.1

• Fix locating the pkgs subdirectory in command-line launchers (PR #200).

2.4.5 Version 2.5

• Make more modern installers, with unicode support and DPI awareness (less blurry) when using NSIS version
3 (PR #189).

• Assemble wrapper executables for commands at build time, rather than on installation. This is possible thanks
to Vinay Sajip adding support for paths from the launcher directory to the launcher bases (PR #191).

• An integration test checks creating an installer, installing and running a simple program (PR #190).

2.4. Release notes 15

https://github.com/conda/constructor
https://github.com/takluyver/pynsist/pull/245/
https://github.com/takluyver/pynsist/pull/237/
https://github.com/takluyver/pynsist/pull/233/
https://github.com/takluyver/pynsist/pull/235/
https://github.com/takluyver/pynsist/pull/227/
https://github.com/takluyver/pynsist/pull/226/
https://github.com/takluyver/pynsist/pull/226/
https://github.com/takluyver/pynsist/pull/215/
https://github.com/takluyver/pynsist/pull/223/
https://github.com/takluyver/pynsist/pull/210/
https://github.com/takluyver/pynsist/pull/213/
https://github.com/takluyver/pynsist/pull/200/
https://github.com/takluyver/pynsist/pull/189/
https://github.com/takluyver/pynsist/pull/191/
https://github.com/takluyver/pynsist/pull/190/

pynsist Documentation, Release 2.8

2.4.6 Version 2.4

• Command sections can now include console=false to make a command on PATH which runs without a
console window (PR #179).

• Fix for using pywin32 in installed code launched from a command (PR #175).

• Work around wheels where some package data files are shipped in a way that assumes the default pip install
layout (PR #172).

2.4.7 Version 2.3

• Command line exes are now based on the launchers made by Vinay Sajip for distlib, instead of the launchers
from setuptools. They should be more robust with spaces in paths (PR #169).

• Fixed excluding entire folders extracted from wheels (#168).

• When doing a per-user install of an application with commands, the PATH environment variable is modified just
for that user (PR #170).

2.4.8 Version 2.2

• New local_wheels option to include packages from wheel .whl files by path (PR #164).

• .dist-info directories from wheels are now installed alongside the importable packages, allowing plugin
discovery mechanisms based on entry points to work (PR #161).

• Fixed including multiple files with the same name to be installed to different folders (PR #162).

• The exclude option now works to exclude files extracted from wheels (PR #147).

• exclude patterns work with either slash / or backslash \ as separators, independent of the platform on which
you build the installer (PR #148).

• Destination paths for the files include option now work with slashes as well as backslashes (PR #158).

• extra_preamble for start menu shortcuts can now use the installdir variable to get the installation
directory. This was already available for commands, so the change makes it easier to use a single preamble for
both (PR #149).

• Test infrastructure switched to pytest and tox (PR #165).

• New FAQ entry on Packaging with tkinter (PR #146).

2.4.9 Version 2.1

• Ensure that if an icon is specified it will be used during install and uninstall, and as the icon for the installer
itself (PR #143).

• Add handling of a license file. If a license_file is given in the Application section of the configuration
file an additional step will take place before installation to check the user’s agreement to abide by the displayed
license. If the license is not given, the extra step is omitted (the default behaviour) (PR #143).

• Fix for launching Python subprocesses with the installed packages available for import (PR #142).

• Ensure .pth files in the installed packages directory are read (PR #138).

16 Chapter 2. Contents

https://github.com/takluyver/pynsist/pull/179/
https://github.com/takluyver/pynsist/pull/175/
https://github.com/takluyver/pynsist/pull/172/
https://distlib.readthedocs.io/en/latest/
https://github.com/takluyver/pynsist/pull/169/
https://github.com/takluyver/pynsist/issues/168/
https://github.com/takluyver/pynsist/pull/170/
https://github.com/takluyver/pynsist/pull/164/
https://github.com/takluyver/pynsist/pull/161/
https://github.com/takluyver/pynsist/pull/162/
https://github.com/takluyver/pynsist/pull/147/
https://github.com/takluyver/pynsist/pull/148/
https://github.com/takluyver/pynsist/pull/158/
https://github.com/takluyver/pynsist/pull/149/
https://github.com/takluyver/pynsist/pull/165/
https://github.com/takluyver/pynsist/pull/146/
https://github.com/takluyver/pynsist/pull/143/
https://github.com/takluyver/pynsist/pull/143/
https://github.com/takluyver/pynsist/pull/142/
https://github.com/takluyver/pynsist/pull/138/

pynsist Documentation, Release 2.8

2.4.10 Version 2.0

Pynsist 2 only supports ‘bundled’ Python, and therefore only Python 3.5 and above. For ‘installer’ format Python and
older Python versions, use Pynsist 1.x (pip install pynsist<2).

• Pynsist installers can now install into a per-user directory, allowing them to be used without admin access.

• Get wheels for the installer from local directories, by listing the directories in extra_wheel_sources in
the [Include] section.

• Better error message when copying fails on a namespace package.

2.4.11 Version 1.12

• Fix a bug with unpacking wheels on Python 2.7, by switching to pathlib2 for the pathlib backport.

2.4.12 Version 1.11

• Lists in the config file, such as packages and pypi_wheels can now begin on the line after the key.

• Clearer error if the specified config file is not found.

2.4.13 Version 1.10

• New optional field publisher, to provide a publisher name in the uninstall list.

• The uninstall information in the registry now also includes DisplayVersion.

• The directory containing python.exe is now added to the %PATH% environment variable when your applica-
tion runs. This fixes a DLL loading issue for PyQt5 if you use bundled Python.

• When installing a 64-bit application, the uninstall registry keys are now added to the 64-bit view of the registry.

• Fixed an error when using wheels which install files into the same package, such as PyQt5 and PyQtChart.

• Issue a warning when we can’t find the cache directory on Windows.

2.4.14 Version 1.9

• When building an installer with Python 3.6 or above, bundled Python is now the default. For Python up to 3.5,
‘installer’ remains the default format. You can override the default by specifying format in the Python section
of the config file.

• The C Runtime needed for bundled Python is now installed ‘app-local’, rather than downloading and installing
Windows Update packages at install time. This is considerably simpler, but the app-local runtime will not be
updated by Windows Update. A new include_msvcrt config option allows the developer to exclude the
app-local runtime - their applications will then depend on the runtime being installed systemwide.

2.4.15 Version 1.8

• New example applications using: - PyQt5 with QML - OpenCV and PyQt5 - Pywebview

• The code to pick an appropriate wheel now considers wheels with Python version specific ABI tags like cp35m,
as well as the stable ABI tags like abi3.

• Fixed a bug with fetching a wheel when another version of the same package is already cached.

2.4. Release notes 17

https://github.com/r0x0r/pywebview

pynsist Documentation, Release 2.8

• Fixed a bug in extracting files from certain wheels.

• Installers using bundled Python may need a Windows update package for the Microsoft C runtime. They now
download this from the RawGit CDN, rather than hitting GitHub directly.

• If the Windows update package fails to install, an error message will be displayed.

2.4.16 Version 1.7

• Support for downloading packages as wheels from PyPI, and new PyQt5 and Pyglet examples which use this
feature.

• Applications can include commands to run at the Windows command prompt. See Command sections.

2.4.17 Version 1.6

• Experimental support for creating installers that bundle Python with the application.

• Support for Python 3.5 installers.

• The user agent is set when downloading Python builds, so downloads from Pynsist can be identified.

• New example applications using PyGI, numpy and matplotlib.

• Fixed a bug with different path separators in exclude patterns.

2.4.18 Version 1.5

• New exclude option to cut unnecessary files out of directories and packages that are copied into the installer.

• The installer.nsi script is now built using Jinja templates instead of a custom templating system. If you
have specify a custom nsi_template file, you will need to update it to use Jinja syntax.

• GUI applications (running under pythonw) have stdout and stderr written to a log file in %APPDATA%. This
should catch all print, warnings, uncaught errors, and avoid the program freezing if it tries to print.

• Applications run in a console (under python) now show the traceback for an uncaught error in the console as
well as writing it to the log file.

• Install pynsist command on Windows.

• Fixed an error message caused by unnecessarily rerunning the installer for the PEP 397 py launcher, bundled
with Python 2 applications.

• pynsist now takes a --no-makensis option, which stops it before running makensis for debugging.

2.4.19 Version 1.0

• New extra_preamble option to specify a snippet of Python code to run before your main application.

• Packages used in the specified entry points no longer need to be listed under the Include section; they are
automatically included.

• Write the crash log to a file in %APPDATA%, not in the installation directory - on modern Windows, the applica-
tion can’t normally write to its install directory.

• Added an example application using pygtk.

• Installer details documentation added.

18 Chapter 2. Contents

https://rawgit.com/
https://github.com/takluyver/pynsist/tree/master/examples/pyqt5
https://github.com/takluyver/pynsist/tree/master/examples/pyglet
http://jinja.pocoo.org/

pynsist Documentation, Release 2.8

• Install Python into Program Files\Common Files or Program Files (x86)\Common Files,
so that if both 32- and 64-bit Pythons of the same version are installed, neither replaces the other.

• When using 64-bit Python, the application files now go in Program Files by default instead of Program
Files (x86).

• Fixed a bug in finding the NSIS install directory on 64-bit Windows.

• Fixed a bug that prevented using multiprocessing in installed applications.

• Fixed a bug where the py.exe launcher was not included if you built a Python 2 installer using Python 3.

• Better error messages for some invalid input.

2.4.20 Version 0.3

• Extra files can now be installed into locations other than the installation directory.

• Shortcuts can have non-Python commands, e.g. to create a start menu shortcut to a help file.

• The Python API has been cleaned up, and there is some documentation for it.

• Better support for modern versions of Windows:

– Uninstall shortcuts correctly on Windows Vista and above.

– Byte compile Python modules at installation, because the .pyc files can’t be written when the application
runs.

• The Python installers are now downloaded over HTTPS instead of using GPG to validate them.

• Shortcuts now launch the application with the working directory set to the user’s home directory, not the appli-
cation location.

2.4.21 Version 0.2

• Python 2 support, thanks to Johannes Baiter.

• Ability to define multiple shortcuts for one application.

• Validate config files to produce more helpful errors, thanks to Tom Wallroth.

• Errors starting the application, such as missing libraries, are now written to a log file in the application directory,
so you can work out what happened.

2.5 Python API

2.5.1 Building installers

class nsist.InstallerBuilder(appname, version, shortcuts, *, publisher=None,
icon=’/home/docs/checkouts/readthedocs.org/user_builds/pynsist/checkouts/2.8/nsist/glossyorb.ico’,
packages=None, extra_files=None, py_version=’3.6.3’,
py_bitness=32, py_format=’bundled’, inc_msvcrt=True,
build_dir=’build/nsis’, installer_name=None,
nsi_template=None, exclude=None, pypi_wheel_reqs=None, ex-
tra_wheel_sources=None, local_wheels=None, commands=None,
license_file=None)

Controls building an installer. This includes three main steps:

2.5. Python API 19

https://github.com/jbaiter
https://github.com/devsnd

pynsist Documentation, Release 2.8

1. Arranging the necessary files in the build directory.

2. Filling out the template NSI file to control NSIS.

3. Running makensis to build the installer.

Parameters

• appname (str) – Application name

• version (str) – Application version

• shortcuts (dict) – Dictionary keyed by shortcut name, containing dictionaries whose
keys match the fields of Shortcut sections in the config file

• publisher (str) – Publisher name

• icon (str) – Path to an icon for the application

• packages (list) – List of strings for importable packages to include

• commands (dict) – Dictionary keyed by command name, containing dicts defining the
commands, as in the config file.

• pypi_wheel_reqs (list) – Package specifications to fetch from PyPI as wheels

• extra_wheel_sources (list of Path objects) – Directory paths to find
wheels in.

• local_wheels (list of str) – Glob paths matching wheel files to include

• extra_files (list) – List of 2-tuples (file, destination) of files to include

• exclude (list) – Paths of files to exclude that would otherwise be included

• py_version (str) – Full version of Python to bundle

• py_bitness (int) – Bitness of bundled Python (32 or 64)

• py_format (str) – (deprecated) ‘bundled’. Use Pynsist 1.x for ‘installer’ option.

• inc_msvcrt (bool) – True to include the Microsoft C runtime with ‘bundled’ Python.

• build_dir (str) – Directory to run the build in

• installer_name (str) – Filename of the installer to produce

• nsi_template (str) – Path to a template NSI file to use

run(makensis=True)
Run all the steps to build an installer.

fetch_python_embeddable()
Fetch the embeddable Windows build for the specified Python version

It will be unpacked into the build directory.

In addition, any *._pth files found therein will have the pkgs path appended to them.

write_script(entrypt, target, extra_preamble=”)
Write a launcher script from a ‘module:function’ entry point

py_version and py_bitness are used to write an appropriate shebang line for the PEP 397 Windows
launcher.

20 Chapter 2. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pynsist Documentation, Release 2.8

prepare_shortcuts()
Prepare shortcut files in the build directory.

If entry_point is specified, write the script. If script is specified, copy to the build directory. Prepare target
and parameters for these shortcuts.

Also copies shortcut icons.

prepare_packages()
Move requested packages into the build directory.

If a pynsist_pkgs directory exists, it is copied into the build directory as pkgs/ . Any packages not already
there are found on sys.path and copied in.

copy_extra_files()
Copy a list of files into the build directory, and add them to install_files or install_dirs as appropriate.

write_nsi()
Write the NSI file to define the NSIS installer.

Most of the details of this are in the template and the nsist.nsiswriter.NSISFileWriter class.

run_nsis()
Runs makensis using the specified .nsi file

Returns the exit code.

2.5.2 Writing NSIS files

class nsist.nsiswriter.NSISFileWriter(template_file, installerbuilder, definitions=None)
Write an .nsi script file by filling in a template.

__init__(template_file, installerbuilder, definitions=None)
Instantiate an NSISFileWriter

Parameters

• template_file (str) – Path to the .nsi template

• definitions (dict) – Mapping of name to value (values will be quoted)

write(target)
Fill out the template and write the result to ‘target’.

Parameters target (str) – Path to the file to be written

2.5.3 Copying Modules and Packages

class nsist.copymodules.ModuleCopier(py_version, path=None)
Finds and copies importable Python modules and packages.

There is a Python 3 implementation using importlib, and a Python 2 implementation using imp.

copy(modname, target)
Copy the importable module ‘modname’ to the directory ‘target’.

modname should be a top-level import, i.e. without any dots. Packages are always copied whole.

This can currently copy regular filesystem files and directories, and extract modules and packages from
appropriately structured zip files.

2.5. Python API 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/importlib.html#module-importlib
https://docs.python.org/3/library/imp.html#module-imp

pynsist Documentation, Release 2.8

nsist.copymodules.copy_modules(modnames, target, py_version, path=None, exclude=None)
Copy the specified importable modules to the target directory.

By default, it finds modules in sys.path - this can be overridden by passing the path parameter.

2.6 Example applications

2.6.1 Simplified examples

The repository contains a number of simple examples for building applications with different frameworks:

• A console application

• A PyQt5 application

– PyQt5 with QML

– PyQt5 with OpenCV

• A PyGI (or PyGObject) application with Numpy and Matplotlib (64 bit, Python 3.4)

• A pygame application

• A pyglet application

• A pywebview application

• A streamlit application

2.6.2 Real-world examples

These may illustrate more complex uses of pynsist.

• Mu is a beginner-friendly code editor for Python, written with PyQt5.

• The author’s own application, Taxonome, is a Python 3, PyQt4 application for working with scientific names
for species.

• Spreads is a book scanning tool, including a tkinter configuration system and a local webserver. Its use of pynsist
(see buildmsi.py) includes working with setuptools info files.

• InnStereo is a GTK 3 application for geologists. Besides pygi, it uses numpy and matplotlib.

2.7 Design principles

or Why I’m Refusing to Add a Feature

There are some principles in the design of Pynsist which have led me to turn down potentially useful options. I’ve
tried to explain them here so that I can link to this rather than summarising them each time.

1. Pynsist is largely a simplifying wrapper around NSIS: it provides an easy way to do a subset of the things NSIS
can do. All simplifying wrappers come under pressure from people who want to do something just outside what
the wrapper currently covers: they’d love to use the wrapper, if it just had one more option. But if we keep
adding options, eventually the simplifying wrapper becomes a convoluted layer of extra complexity over the
original system.

22 Chapter 2. Contents

https://docs.python.org/3/library/sys.html#sys.path
https://github.com/takluyver/pynsist/tree/master/examples/console
https://github.com/takluyver/pynsist/tree/master/examples/pyqt5
https://github.com/takluyver/pynsist/tree/master/examples/pyqt5_qml
https://github.com/takluyver/pynsist/tree/master/examples/pyqt5_opencv
https://github.com/takluyver/pynsist/tree/master/examples/pygi_mpl_numpy
https://github.com/takluyver/pynsist/tree/master/examples/pygame
https://github.com/takluyver/pynsist/tree/master/examples/pyglet
https://github.com/takluyver/pynsist/tree/master/examples/pywebview
https://github.com/takluyver/pynsist/tree/master/examples/streamlit
https://codewith.mu/
https://bitbucket.org/taxonome/taxonome/src
https://github.com/jbaiter/spreads/tree/windows
https://github.com/tobias47n9e/innsbruck-stereographic
http://nsis.sourceforge.net/

pynsist Documentation, Release 2.8

2. I’m very keen to keep installers as simple as possible. There are all sorts of clever things we could do at install
time. But it’s much harder to write and test the NSIS install code than the Python build code, and errors when
the end user installs your software are a bigger problem than errors when you build it, because you’re better able
to understand and fix them. So Pynsist does as much as possible at build time so that the installer can be simple.

3. Pynsist has a limited scope: it builds Windows installers for Python applications. Mostly GUI applications, but
it does also have support for adding command-line tools. I don’t plan to add support for other target platforms
or languages.

2.7.1 If you need more flexibility

If you want to do something which Pynsist doesn’t support, there are several ways it can still help you:

• Generate an nsi script: You can run Pynsist once with the --no-makensis option. In the build direc-
tory, you’ll find a file installer.nsi, which is the script for your installer. You can modify this and run
makensis installer.nsi yourself to build the installer.

• Write a custom template: Pynsist uses Jinja templates to create the nsi script. You can write a custom template
and specify it in the Build section in your config file. Custom templates can inherit from the templates in Pynsist
and override blocks, so you have a lot of control over the installer this way.

• Cannibalise the code: Pull out whatever pieces are useful to you from Pynsist and use them in your build
scripts. There are the installer templates, code to find and download wheels from PyPI, to download Python
itself, to create command-line entry points, to find makensis.exe on Windows, and so on. You can take
specific bits to reuse, or copy the whole thing and apply some changes.

2.7.2 Specific non-goals

These are ideas that I’ve considered and decided not to do:

• Concealing source code: I’m writing Free and Open Source Software (FOSS) and I want to help other people
do the same. A core FOSS principle is that the user can inspect and understand the code they are running. I’m
not interested in anything that makes that harder.

• Detecting dependencies by finding import statements: My experience is that this doesn’t work well. It misses
dynamically loaded dependencies, and it can have false positives where a module is only needed in some sit-
uations. I think specifying all modules needed is clearer than specifying corrections to what a tool detects. I
am interested in dynamically finding dependencies by running a program; see my prototype kartoffel tool if you
want to investigate this.

• Single-file executables: You could probably reuse a lot of Pynsist’s code to make single-file executables. They
would ‘install’ to a temporary directory and then run the application. But it’s not a feature I’m planning to
include.

• MSI packages: They have some advantages, but they’re much more complicated to make than NSIS installers.
I have an experiment with using WiX in a branch; feel free to use it as a starting point.

These aren’t set in stone: I’ve changed my mind before, and it could well happen again.

See also the examples folder in the repository.

The API is not yet documented here, because I’m still working out how it should be structured. The functions and
classes have docstrings, and you’re welcome to use them directly, though they may change in the future.

See also:

pynsist source code on Github

2.7. Design principles 23

https://pypi.org/project/kartoffel/
https://github.com/takluyver/pynsist/tree/wixperiment/examples/_mu
https://github.com/takluyver/pynsist/tree/master/examples
https://github.com/takluyver/pynsist

pynsist Documentation, Release 2.8

24 Chapter 2. Contents

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

25

pynsist Documentation, Release 2.8

26 Chapter 3. Indices and tables

Python Module Index

n
nsist, 19
nsist.copymodules, 21
nsist.nsiswriter, 21

27

pynsist Documentation, Release 2.8

28 Python Module Index

Index

Symbols
__init__() (nsist.nsiswriter.NSISFileWriter method),

21

A
APPDATA, 6, 10

C
copy() (nsist.copymodules.ModuleCopier method), 21
copy_extra_files() (nsist.InstallerBuilder

method), 21
copy_modules() (in module nsist.copymodules), 21

E
environment variable

APPDATA, 6, 10
PATH, 7, 10, 16

F
fetch_python_embeddable()

(nsist.InstallerBuilder method), 20

I
InstallerBuilder (class in nsist), 19

M
ModuleCopier (class in nsist.copymodules), 21

N
NSISFileWriter (class in nsist.nsiswriter), 21
nsist (module), 19
nsist.copymodules (module), 21
nsist.nsiswriter (module), 21

P
PATH, 7, 10, 16
prepare_packages() (nsist.InstallerBuilder

method), 21

prepare_shortcuts() (nsist.InstallerBuilder
method), 20

R
run() (nsist.InstallerBuilder method), 20
run_nsis() (nsist.InstallerBuilder method), 21

W
write() (nsist.nsiswriter.NSISFileWriter method), 21
write_nsi() (nsist.InstallerBuilder method), 21
write_script() (nsist.InstallerBuilder method), 20

29

	Quickstart
	Contents
	The Config File
	Installer details
	FAQs
	Release notes
	Python API
	Example applications
	Design principles

	Indices and tables
	Python Module Index
	Index

